

- ◇ まずは確認 ······P.3
 ◇ 電源を入れる ·····P.4 ~ P.5
 ◇ 探査を始める前に ·····P.6
 ◇ 探査を始める ·····P.7
 ◇ 1.探査する場所に直接墨出しする ·····P.8 ~ P.11
- ◆ 探査結果の解析 ······P.15 ~ P.22
- ◆ 探査結果の解析3 ·····P.26 ~ P.29
- ◇ 深度校正(比誘電率)設定 ······P.30
- ◆ CFカードから保存データの呼び出し ・・・・・P.32

- ◇ ハンディサーチ(電磁波レーダ法)の原理①②③・・・・・P.37 ~ P.39
- ◆ お問合せ先 ・・・・・P.40

KGS 株式会社 計測技術サービス 2

満充電バッテリーで約1.5時間駆動、充電時間は約2時間 ※バッテリーの劣化状態によっては、1.5時間使用できない場合があります ※キャメロンシノ製(灰白色)のバッテリーは満充電で約3.0時間以上使用可能、充電時間は約2.5時間 (劣化状態によっては連続使用時間が少なくなります)

コンパクトフラッシュカードは、しっかり奥まで差し込む ※CFカードの取付、取り外しは電源OFFで行います ※探査データ保存数はメモリ容量1GB使用時,約200本 (15m探査データをバイナリ形式で保存時)

◆ 本体の後面部にある電源スイッチを入れましょう

◆ 電源スイッチを押した後の画面表示

1. 液晶のバックライトがつく 2. 機種名とバージョン情報を表示 3. 待機画面

KGS 株式会社 計測技術サービス 5

探査を始める前に

◆ どこに何がありそうか予測して探査する

◆ 探査するには、2つの方法があります

1.探査する場所に直接墨出し(マーキング)する。

2.探査する範囲をあらかじめ決めて、

その範囲を探査する。

1.探査する場所に直接墨出しする

◆ スタートボタンを押す

STARTボタンを押すと、『ピッ』と 音が鳴り、画面上に破線が表示されます。 この状態でタイヤが回ると探査が始まる。

破線(固定カーソル)

1.探査する場所に直接墨出しする

◆ 墨出しする

見つけたい対象物に対して 直行するように走行させます。

※ただし、鉄筋の真上を平行 して走行(横側鉄筋の真上) すると、画像がみだれます ので注意が必要です。

◆ 墨出しする 破線(固定カーソル)の位置で墨出し

KGS 株式会社 計測技術サービス 10

ハンディサーチの特徴して、探査をしながら鉄筋位置を素早く墨出しできます。 破線(固定カーソル)位置と山形画像頂点が重なったとき、後面部中央下に墨出しします。 現場での作業性が非常に良いです。

ご注意:NJJ-105(K)は前輪車軸に距離計が実装されています。前進探査時,バック(後進)すると距離計が 加算(探査画像は戻りません)されます。バック機能はありませんので、墨出し時は注意が必要です。

KGS 株式会社 **計測技術サービス** 11

◆ 探査する範囲を決め、終了位置と探査開始位置を決める

探査位置

正面と後面の

マークを結んだライン

の下を中央として、走査します。

2.探査する範囲を決めてから探査

- ◆ 範囲内を探査する
- 1.ハンディサーチの側面中心 ▼マークを探査開始位置に 合わせます。
- 2.STARTボタンを押すと『ピッ』と音が鳴り、画面上に破線が表示されます。
- 3.ハンディサーチを前進させ、 側面▼マークが探査終了位置 を通過したら、再度START ボタンを押して『ピピッ』と 音が鳴り、探査を終了します。 ※探査終了後、STARTボタンを押すと、 探査した画像が消えてしまいます。 CFボタンを押して、探査データの 保存をお勧めいたします。 探査データの保存はP31参照

◆ 探査後、画面上に表示された画像から鉄筋の位置を読み取る

1. 設定を変更して、Aモード波形(反射波形)を表示させる。

5 SEARCH

く操作ボタン>

<mark>赤丸</mark>内のSETボタンを押して、 設定画面を表示させます。

< 設定画面>			
表示色	カラー1		
画面反転	ΤĒ		
表示モード	В		
階調方式	絶対値		
測定方式	距離送り		
深度校正	08.0 [+0] []		
日付時間	2016/12/16 18:51		
データNo.	075		
フォルダ	DATA		
距離補正	+ 0 [0.0000m]		
外部出力	CF[バイナリ]		
表示レンジ	標		
表示単位	X:m / Y:cm		
Character Mode	Japanese		
探査画像処理	固定		
スクロール	加速		
自動マーカ	終わりから検索		

選択されている設定項目は**青矢印**が 示す項目のようにブルーバックになる。

◆ 探査後、画面上に表示された画像から鉄筋の位置を読み取る

1. 設定を変更して、Aモード波形(反射波形)を表示させる。

表示色	カラー1
画面反転	ΤĒ
表示モード	В
階調方式	絶対値
測定方式	距離送り
深度校正	08.0 [+0] []
日付時間	2016/12/16 18:52
データNo.	075
フォルダ	DATA
距離補正	+ 0 [0.0000m]
外部出力	CF[バイナリ]
表示レンジ	標
表示単位	X:m / Y:cm
Character Mode	Japanese
探查画像処理	固定
スクロール	加速
自動マーカ	終わりから検索

く設定画面>

く操作ボタン>

ハンディサーチの下矢印ボタンを押して、 設定の選択項目を『表示モード』に移動 します。

探査結果の解析

◆ 探査後、画面上に表示された画像から鉄筋の位置を読み取る

1. 設定を変更して、Aモード波形(反射波形)を表示させる。

表示色	カラー1
画面反転	E
表示モー	В
階調方式	絶対値
測定方式	距離送り
深度校正	08.0 [+0] []
日付時間	2016/12/16 18:54
データNo.	075
フォルダ	DATA
距離補正	+ 0 [0.0000m]
外部出力	CF[バイナリ]
表示レンジ	標
表示単位	X:m / Y:cm
Character Mode	Japanese
探査画像処理	固定
スクロール	加速
自動マーカ	終わりから検索

<設定画面>

表示色	カラー1
画面反転	ΤĒ
表示モー 📫	BA
階調方式	絶対値
測定方式	距離送り
深度校正	08.0 [+0] []
日付時間	2016/12/16 18:54
データNo.	075
フォルダ	DATA
距離補正	+ 0 [0.000m]
外部出力	CF[バイナリ]
表示レンジ	標
表示単位	X:m / Y:cm
Character Mode	Japanese
探査画像処理	固定
スクロール	加速
自動マーカ	終わりから検索

<操作ボタン>

矢印ボタンの右を押して、設定 内容の項目へブルーバックを移動 して、上または下を押します。 『B』から『BA』に設定を変更 します。最後にSETボタンを 押して画面を戻します。

探査結果の解析

◆ 探査後、画面上に表示された画像から鉄筋の位置を読み取る

1. 設定を変更して、Aモード波形(反射波形)を表示する。

探査結果の解析

◆ 探査後、画面上に表示された画像から鉄筋の位置を読み取る

2. Aモード波形(反射波形)を用いて、深さを確認します。

KGS 株式会社 **計測技術サービス**

2017年11月

19

 ◆ 探査後、画面上に表示された画像から鉄筋の位置を読み取る

 2. Aモード波形(反射波形)を用いて、深さを確認する。

縦カーソルを山の中心に合わせます。 ※縦カーソル位置はスタート位置からの距離(X)を 表します。

下矢印ボタンを押し続けると、 上から下に横カーソルが移動します。 ※横カーソル位置は深さ(Y)を表します。

◆ 探査後、画面上に表示された画像から鉄筋の位置を読み取る 2. Aモード波形(反射波形)を用いて、深さを確認する。

横カーソルを反射波形の右側ピークに合わせます。 ※鉄筋の場合、反射波形は右側に振れます

縦カーソルと横カーソルの交点位置情報は 画面上部の「X:距離」と「Y:深さ」 で確認できます。

※左画面の縦,横カーソルについて

- ・縦カーソル(距離:X)は鉄筋の中心位置です。
- ・横カーソル(深さ:Y)はコンクリートと鉄筋の境界面です。 (鉄筋の中心ではありません)

◆ 探査後、画面上に表示された画像から鉄筋の位置を読み取る

3.鉄筋の位置にマークする。

右画面のように、縦カーソル(距離)と 横カーソル(深さ)を合わせた状態で、 MARKボタンを押すと、カーソルマーカ 座標1に交点座標の位置情報が記録され ます。本体でのカーソルマーカ座標は42 個まで記録できます。

※ε=8.0の時の深さを表示しています

※打設から3年以上経過しているコンクリートでは

『5.0~8.0』を目安にして下さい。

◆ 探査した画像を解析する

4.壁がボード貼りで、空間での反射が強く、鉄筋や配線の山形が見えない場合

探査結果の解析2

4.壁がボード貼りで、空間での反射が強く、鉄筋や配線の山形が見えない場合 等の横縞が表示されている時は『平均波処理』を使ってみましょう!

画面下の処理がブルーバックに切り替わる。

探査結果の解析2

4.壁がボード貼りで、空間での反射が強く、鉄筋や配線の山形が見えない場合 等の横縞が表示されている時は『平均波処理』を使ってみましょう!

処理がブルーバックになっている状態で 上ボタンを3回押して『固定』を『平均』 に変更します。その後、再度PRCSボタン を押して、画像処理を終了します。 処理がブルーバックから通常表示に戻ります。

◆ 探査した画像を解析する

5.深い鉄筋が見にくい場合は、感度を変更してみましょう! NJJ-105(K)ではGAINボタンを押すことにより、10段階の表示感度調節ができます。

※感度は[A深]または[+1深]の設定をお勧めします。

画面左下の感度の右側に 設定感度が表示されます。

KGS 株式会社 計測技術サービス 26

探査結果の解析3

5.深い鉄筋が見にくい場合は、感度を変更してみましょう!

感度が+1浅になっているので、GAIN (感度)ボタンを押して、A深にしてみる。

深さ約250mm付近の 山形がしっかり表示された。

探査結果の解析3

6.更に、画面表示をワイドモードにしてみましょう!

<設定画面>		
表示色	カラー 1	
画面反転	E	
表示モード	BA	
階調方式	絶対値	
測定方式	距離送り	
深度校正	08.0 [+0] []	
日付時間	2016/12/16 18:57	
データNo.	075	
フォルダ	DATA	
距離補正	+ 0 [0.0000m]	
外部出力	CF[バイナリ]	
表示レンジ	標	
表示単位	X:m / Y:cm	
Character Mode	Japanese	
探査画像処理	固定	
スクロール	加速	
自動マーカ	終わりから検索	

くえんちままへ

『表示レンジ』	の設定を
変更します。	

<設定画面>		
表示色	カラー1	
画面反転	E	
表示モード	ВА	
階調方式	絶対値	
測定方式	距離送り	
深度校正	08.0 [+0] []	
日付時間	2016/12/16 18:57	
データNo.	075	
フォルダ	DATA	
距離補正	+ 0 [0.0000m]	
外部出力	CF[バイナリ]	
表示レン	標W	
表示単位	X:m / Y:cm	
Character Mode	Japanese	
探査画像処理	固定	
スクロール	加速	
自動マーカ	終わりから検索	

上か下ボタンで『標W』に 変更し、SETボタンを押す。

標準BAモードでは、約32cmの距離 データしか表示していない。 (Bモードは約49cmの距離データ表示) SETボタンを押して、設定画面 に移行します。

2017年11月

KGS 株式会社 計測技術サービス 28

探査結果の解析3

6.更に、画面表示をワイドモードにしてみましょう!

標準BAモードでは、約32cmの距離 データしか表示していない。 (Bモードは約49cmの距離データ表示)

標準BAワイドモードでは、約2倍の 距離データが表示され、山形の頂点もわかりやすい!

深度校正(比誘電率)設定

表示モード

階調方式

測定方式

深度校正

日付時間

オルダ

距離補正

外部出力

表示単位

表示レンジ

Character Mode

探杳画像処理

スクロール

自動マーカ

No

◆ 深度校正(比誘電率)の値を変更

表示色

画面反転

マーカ1の深さが_E=8.0の 時39mmと解析されました。 横カーソル位置をマーカ1 に合わせている状態です。 Y=39mmとなっています。 SETボタンを押して設定 画面に移行します。

く設定画面> モノクロ1 表示色 画面反転

表示モード	ВА
階調方式	オフセット
測定方式	距離送り
深度校正	08.0 [+0] [39mm]
日付時間	2016/12/26 18:16
データNo.	088
フォルダ	DATA
距離補正	+ 0 [732.5mm]
外部出力	CF[バイナリ]
表示レンジ	標
表示単位	X:mm / Y:mm
Character Mode	Japanese
探査画像処理	固定
スクロール	加速
自動マーカ	終わりから検索

īF

深度校正の右側の値が [8.0],その右側の数値が [39mm]となっています。 BAモード画面の横カーソル 位置の深さを表示していま す。

深度校正の右側の値を [6.5]に変更すると、その 右側の数値が[45mm]に 変わりました。SETボタ ンを押してBAモード画面 に戻ります。

モノクロ1

オフセッ

2016/12/26 18:23

CF[バイナリ]

X:mm / Y:mm

終わりから検索

Japanese

固定

加速

[45mm]

ΤĒ

BA

06 5

088

DATA

※深度校正(比誘電率)の値は[2.0]~[20.0]の0.1単位で変更可能です。 ※右表(例)のように、比誘電率の値を変更すると深さ表示スケールが変わります。 ※打設から3年以上経過しているコンクリートでは『5.0~8.0』を目安にして下さい。

<BAモード画面> 06.5 X 100.0mm Y 45mm 100 45 2 48 3 397 51

横カーソル位置の数値が Y=45mmになっています。

感度 +2深 処理 固定

(例)比誘電率設定変更値の深さの違い			
(E=8.0,Y=39mmの時,Eの値変更) 比議重変弘空結 深さ			
$\epsilon = 5.5$		50mm	
$\varepsilon = 6.5$	\rightarrow	45mm	
$\varepsilon = 7.5$	\rightarrow	41mm	
$\varepsilon = 8.0$	\rightarrow	39mm	
$\varepsilon = 8.5$	\rightarrow	38mm	
$\varepsilon = 10.0$	\rightarrow	34mm	

2017年11月

KGS _{株式会社} 計測技術サービス 30

探査データをCFカードに保存

◆ 探査,解析したデータをCFカードに保存

く設定画面>

表示色	モノクロ1
画面反転	E
表示モード	ВА
階調方式	オフセット
測定方式	距離送り
深度校正	08.0 [+0] []
日付時間	2016/08/31 18:12
データNo.	088
フォルダ	DATA
距離補正	+ 0 [Omm]
外部出力	CF[バイナリ]
表示レンジ	標
表示単位	X:mm / Y:mm
Character Mode	Japanese
探査画像処理	固定
スクロール	加速
自動マーカ	終わりから検索

予め、SETボタンを押して、 設定画面の外部出力の設定 を『CFバイナリ』にしてお きます。 ※日付時間,データNo,

フォルダも確認します。

<操作ボタン>

STARTボタン→探査→START ボタン(探査終了),その後OUTPUT ボタンを押します。

※保存データ番号は、設定画面の[日付時間],[デ− タNo]が反映され[フォルダ]の『DATA』内に B(バイナリデータ)として保存します。

<データ保存>

CFカードにデータが 保存されます

KGS 株式会社 計測技術サービス 31

く操作ボタン>

CFボタンを押します。 右側の測定データ ファイル一覧の画面が 表示されます。

測定データファイル一覧 フォルダ:DATA	
B8311814.014 2016/08/31 18:14 B8311814.015 2016/08/31 18:14 B8311814.016 2016/08/31 18:15 B8311815.017 2016/08/31 18:15 B8311815.017 2016/08/31 18:15 B8311815.017 2016/08/31 18:15 B8311812.075 2016/12/16 19:25 B8311812.076 2016/12/16 19:26 B8311812.077 2016/12/16 19:26 B8311812.078 2016/12/16 19:26 B8311812.081 2016/12/16 19:26 B8311812.082 2016/12/16 19:26 B8311812.082 2016/12/16 19:26 B8311812.082 2016/12/16 19:26 B8311812.082 2016/12/16 19:26 B8311812.084 2016/12/16 19:26 B8311812.085 2016/12/16 19:26 B8311812.085 2016/12/16 19:26 B8311812.085 2016/12/16 19:26 B8311812.086 2016/12/16 19:26 B8311812.087 2016/12/16 19:26 B8311812.086 2016/12/16 <th></th>	

表示したいデータを操作ボタンの上 下ボタンで選択します。『読込み』 になっていることを確認後、 ENTERボタンを押します。 <保存データ呼び出し>

CFカードに保存した データが表示されます。 ※マーカのやり直し、処理の変更 などした後、OUTPUTボタンを 押すとその時のデータNo.で保存 することができます。

探査結果の印刷

◆ 探査した画像を専用プリンターで印刷する

1.設定を変更します。

く設定画面>		
表示色	カラー1	
画面反転	Æ	
表示モード	BA	
階調方式	絶対値	
測定方式	距離送り	
深度校正	08.0 [+0] []	
日付時間	2016/12/16 18:59	
データNo.	075	
フォルダ	DATA	
距離補正	+ 0 [0.0000m]	
外部出力	CF[バイナリ]	
表示レンジ	標₩	
表示単位	X:m / Y:cm	
Character Mode	Japanese	
探査画像処理	固定	
スクロール	加速	
自動マーカ	終わりから検索	

SETボタンを押して 設定画面に移行します。 外部出力の設定を

プリンタ [I] に変更します。

<設定画面>		
表示色	カラー1	
画面反転	E	
表示モード	BA	
階調方式	絶対値	
測定方式	距離送り	
深度校正	08.0 [+0] []	
日付時間	2016/12/16 19:00	
データNo.	075	
フォルダ	DATA	
距離補正	+ 0 [0.0000m]	
外部出力	プリンタ[I]	
表示レンジ	標₩	
表示単位	X:m / Y:cm	
Character Mode	Japanese	
探査画像処理	固定	
スクロール	加速	
自動マーカ	終わりから検索	

変更したらSETボタンを 押して画面を戻します。

『P』になっていればOK!

◆ 探査した画像を専用プリンターで印刷する

2.印刷します。

<印刷サンプル>

印刷したい探査画像が表示されている状態で、右のように平面上に プリンタ(電源ON)と本体前面部の赤外線窓を距離100mm~150mmに 配置して、OUTPUTボタンを押します。

※印刷は探査画像上に表示されている探査距離までを印刷します。

例:10m探査後、解析をして、探査画面に表示されている最大距離 が3mの場合、0~3mを印刷します。

10m印刷する場合、カーソルで距離10m位置を表示させてください。 ※記録紙

新品の記録紙が25mの時、2mの探査画像(マーカ数22個以上の場合)を

印刷すると、約45回(90m分)印刷できます(マーカ無しの場合,約63回(126m分))。

1mの探査画像(マーカ数22個以上の場合)印刷すると、約70回(70m分)印刷可能(マーカ無しの場合,約102回(102m分)印刷)。

KGS _{株式会社} 計測技術サービス 34

プリンタセットとの接続

IrDAによりケーブ ル接続なしで印刷

が可能。

(オブション)

オススメの設定1

◆ 高分解能を追求して探査

<設定画面>		
表示色	モノクロ2	
画面反転	E	
表示モード	BA	
階調方式	オフセット	
測定方式	距離送り	
深度校正	08.0 [+0] []	
日付時間	2016/12/27 15:21	
データNo.	088	
フォルダ	DATA	
距離補正	+ 0 [697.5mm]	
外部出力	CF[バイナリ]	
表示レンジ	標₩	
表示単位	X:mm / Y:mm	
Character Mode	Japanese	
探査画像処理	固定	
スクロール	加速	
自動マーカ	終わりから検索	

※深い部分の山形の表示,解析したい場合,[感度]は[A深]または[+1深], [表示レンジ]は[深]または[深W]をお勧めいたします。

KGS 株式会社 計測技術サービス 35

オススメの設定2

《設定画面> 》 《 》 《 》 《 》 》		
表示色	カラー3	
画面反転	Τ	
表示モード	BA	
階調方式	オフセット	
測定方式	距離送り	
深度校正	08.0 [+0] [46mm]	
日付時間	2016/12/27 15:34	
データNo.	088	
フォルダ	DATA	
距離補正	+ 0 [702.5mm]	
外部出力	CF[バイナリ]	
表示レンジ	標W	
表示単位	X:mm / Y:mm	
Character Mode	Japanese	
探査画像処理	固定	
スクロール	加速	
自動マーカ	終わりから検索	

※深い部分の山形の表示,解析したい場合,[感度]は[A深]または[+1深], [表示レンジ]は[深]または[深W]をお勧めいたします。

KGS 株式会社 計測技術サービス 36

KGS 株式会社 計測技術サービス

ハンディサーチ(電磁波レーダ法)の原理(1)

『電磁波レーダ法』とはアンテナから電磁波を放射して、コンク リート中の電気的性質(誘電率)の異なる材質(鉄筋等)の境界 面での電磁波の反射を利用してコンクリート中の埋設物を探査 する方法です。距離は車輪に組み込まれている距離計で探査し ます。

ここでいう比誘電率とは、真空中の電磁波速度の比率を1と定 義しています。下記一覧表は、代表的な各媒質中の電磁波速 度の比誘電率の値です。

理学的には

「媒質の誘電率と真空の誘電率の比 $\varepsilon / \varepsilon_0 = \varepsilon_0$ のことである」 と説明されています。

比誘電率に単位はなく、媒質固有の値です。

比誘電率一覧表

材質	比誘電率
空気	1
発砲スチロール	1
コンクリート(乾燥)	4~12
コンクリート(湿潤)	8~20
アスコン	4~6
水	81
土(乾燥)	2~6
土(湿潤)	10~30
導体(金属)	∞(無限)

装置で設定する際に実測値での補正が困難な場合は、

■打設から3年以上経過しているコンクリートでは『5.0~8.0』を目安にして 下さい。

※標準コンクリートに於いて、塩分や骨材の影響は考慮していない状態。

KGS 株式会社 計測技術サービス

ハンディサーチ(電磁波レーダ法)の原理②

ハンディサーチの放射する電磁波は、側面から見た場合、 左右対称に約40°~45°(約90°)に広がって放射 しています。また、正面から見た場合は、装置の横幅と ほぼ同じ幅で、少し膨らみをもって真下へ放射されてい ます。 ハンディサーチは、埋設物の直上位置だけでなく、それよりも手前から埋設物の反射を捉えています。下図[D1]~[D3](装置位置)は、装置が鉄筋を横切る様子です。装置位置が[D1]のとき、装置と鉄筋間の反射波形を装置の真下に描画します。そのときの電磁波伝搬時間は[T1]です。同様に[D2]は[T2]、[D3]は[T3]の反射波形を装置の真下に描画します。[D1]~[D3]各々の電磁波伝搬時間(T)は異なり、結果、埋設物の位置が山形で表示されます。

KGS 株式会社 計測技術サービス

ハンディサーチ(電磁波レーダ法)の原理③

コンクリートをはじめ、物質(材質)には、ある限られた周波数 成分だけを透過させる特性(フィルタ特性)を持っています。 『送信アンテナ→コンクリート→反射物体→コンクリート →受信アンテナ』の透過経路のように物質(材質)を通過する ことにより、リンギングが発生し、探査結果画像に表示されます。

レーダ探査機の性能を決める、最も重要な要素の1つがアン テナ周波数です。NJJ-105(K)では2.3GHzのアンテナを搭載 しています。

※[かぶり厚さ]と[鉄筋の空き]の水平分解能 [1:0.2] ※探査状況によっては、分解できない場合があります

(探査条件によっては、分解できない場合があります)

ー お問合せ先 ー

♦ 内容にご不明点が御座いましたら、下記へお問い合わせ下さい。

KGS 株式会社 計測技術サービス

■ 東京本社 〒112-0004 東京都文京区後楽1丁目2番8号 後楽一丁目ビル8階

TEL 03-6379-0334 FAX 03-6379-0335

□ 大阪営業所 〒550-0002 大阪府大阪市西区江戸堀2丁目1-1
 江戸堀センタービル9階

TEL 06-6225-1088 FAX 東京本社に統一

